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Abstract 

In this note, we investigate tensor products of perfect modules and maximal surjective 
Buchsbaum modules over any CM local ring. In particular, we should prove that the above 
tensor products are always Buchsbaum modules. @ 1998 Elsevier Science B.V. 

A M S  Classi[ication: 13C14, 13D45, 13H10 

1. Introduction 

The main purpose o f  this note is to prove the fo l lowing  theorem. 

Theorem 1.1. Let A be a C M  local ring, M a perfect A-module, that is, grade A M = 

pd A M and N a maximal  surjective Buchsbaum A-module. Then 

(1) m @A N is always a Buchsbaum A-module. 

(2)  d i m M  ®A N : d i m M .  

(3) depth M ,~,~ N = max  {depth N - pd A M,0}.  

In particular, when depth N > pd A M ,  

(4) M ~;;A N is a suljective Buchsbaum A-module. 

Corollary 1.2. Let  A be a C M  local rin9 and M a perJect A-module with dim M > 1. 

Suppose that N is a maximal  surjective Buchsbaum A-module. Then the followin9 

conditions are equivalent: 

(1) N is a maximal  C M  A-module. 

(2) M ~A N is a C M  A-module. 
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We first recall several definitions. Let A be a Noetherian local ring with maximal 
ideal m and the residue field k = A/re. Let M be a finite A-module. 

The grade of M, the projective dimension of M, the injective dimension of M, 
the minimal number of generators and the length of M are denoted by grade A M, pd.4 
M, idA M,/~A(M) and {~(M), respectively (cf. e.g. [6]). Moreover, for any parameter 
ideal J of M, the multiplicity of M with respect to J is denoted by ej(M). 

We put /~ (M)  = dimk Exti~(k,M ), the ith Bass number of  M and put ]~A(M) = 
dimk Tori~(k,M), the ith Betti number of M. 

M is called an F.L.C. if the local cohomology modules H[,,(M) are of finite length 
for all i < r = dimM. Then we put 

r - I  

i=O 

M is called a Buchsbaum A-module if the difference {A(M/JM) - e j (M)  is indepen- 
dent of J for all parameter ideals J of M, Then we have IA(M) =- (A (M/JM) -  ej(M) 
for all above J, See [10, 11] for details. 

M is called a surjective Buchsbaum A-module if the natural map ~p.~ :Exti4(k,M ) 
H~t(M ) is surjective for all i < dim M. See [5, 7, 12] for details. For example, all CM 
A-modules and all linear maximal Buchsbaum A-modules are surjective Buchsbaum A- 
modules (cf. [13]). On the other hand, in general, any surjective Buchsbaum A-module 
is a Buchsbaum A-module. When A is regular, the converse is true; see [10, Theorem 
2.10, Corollary 2.16]. Moreover, M is called maximal if d imM = dimA. 

In [5], Kawasaki proved the following theorem. 

Theorem 1.3 (Kawasaki [5, Theorem 3.3]). Let A be a CM local ring and KA a 
canonical module of  A. Let M be a finite A-module of  finite projective dimension. 
Then the jbllowing statements hold: 

(1) M 'E'A KA is" CM if  and only if  so is M. 
(2) I f  M ,~,~ KA is a surjective Buchsbaum A-module, then so is M. 

Remark 1. There exists a surjective Buchsbaum A-module M of finite projective di- 
mension such that M ~A KA is not surjective Buchsbaum (cf. [5, Proposition 4.1]). 

In this note, we shall improve the statement (1) of the above theorem and investigate 
the structure of tensor products of  perfect modules and maximal surjective Buchsbaum 
modules over any CM local ring; see Theorem 1.1. 

In order to prove Theorem 1.1, we raise the following well-known facts (cf. e.g. 

t91). 
Let A be a local ring and ~ N  are finite A-modules. Then: 

1.4. depth A < grade A M + dim M < dim A. 

1.5. grade4 M < pd A M. 
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1.6. Auslander-Buchsbaum: When pd A M < ,vo, one has depthA = pd A M + depth M. 

1.7. Intersection Theorem: When PdAM < w ,  one has d i m N  < pd A M + d i m M @ A N .  

1.8. I f  A admits a CM A-module of  finite projective dimension, then it is a CM local 
ring; see Proposition 4.1. 

1.9. If  A is a CM local ring and pd x M < 2 ,  then M is perfect if and only if M is 
CM. 

In Section 2, we shall prove Theorem 1.1 and Corollary 1.2. The proof o f  

Theorem 1.1 consists of  three pieces as follows: 
First, in Section 2.1, we prove that the tensor products of  perfect modules and 

maximal CM modules are CM modules. 
Next, in the Section 2.2, we calculate the local cohomology modules of  the tensor 

product M '~'A N; see Proposition 2.7. 

Finally, in the Section 2.3, we complete the proof of  Theorem 1.1, using finite 

injective hulls. 

In Section 3, we give several examples with respect to Theorem 1.1. For example, the 

tensor products of  any typical (cf. [5]) surjective Buchsbaum A-module and maximal 

CM A-module are surjective Buchsbaum A-modules over any complete CM local ring 
A; see Proposition 3.6. On the other hand, we give many examples o f  the tensor product 

of  typical surjective Buchsbaum A-module and maximal surjective A-module which is 
not a surjective Buchsbaum A-module; see Example 3.7. 

In Section 4, we prove the following result. 

Proposition 1.4. Let A be a local ring and n a nonnegative integer. I f  A admits a 
finite A-module M of  finite projective dimension which satisfies the Serre condition 

Sn, then A itself satisfies 5'n. 

2. Proof of Theorem 1.1 

2.1. Maximal C M modules 

Let A be a local ring and M,N nonzero finite A-modules. We first give several 

lemmas. 

Lemma 2.1. Suppose that M is perJect and d i m N  = dimA = d. Then d i m M ® A N  = 

dim M. 

Proof.  The inequality dim M '~A N <_ dim M is clear. 

On the other hand, by 1.7 and 1.4, one has 

dim M (~A N _> dim N - pd A M = d - grade~ M >_ dim M. 

Hence d i m M  ®A N = d imM. [] 
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Lemma 2,2. Suppose that pd A M < oc and N is a maximal C M  A-module. Then 
Tor/A(M,N) = O for  all i >  1. 

Proof.  Let 2 " 0 F~ - ~  F,-1  ~ --, Fi  q'~ . . . .  > Fo --, 0 be a minimal free resolution 
o f  M over A, where s : pd A M. From the Buchsbaum-Eisenbud criterion [2], we have 

1 grade(L(d2i),A) > i for all i > 1, where ri = ~ j = i ( -  )JrankA Fj. 

Since N is a maximal CM A-module,  we get grade(L,(qSi),N) > i for all i > 1. 

Therefore ~z ~A N is acyclic, that is, Tori4(M, N )  : 0 for all i > 1. 

Lemma 2.3 (Strooker [9, Theorem 7.1.2]). Suppose that s = pd A M < ,3c and T o r /  

(M, N)  : 0 for  all i > 1, Then 
, f  

N)  = for aU i 
p=O 

From these lemmas, we obtain that the following proposition. 

Proposition 2.4. Suppose that M is a perfect A-module and N is' a maxiaml C M  
A-module. Then M ~A N is a C M  A-module with dim M ®,4 N : dim M. 

Proof .  Put d = d imA and s = pd A M < oc. By Lemmas 2.2 and 2.3, one can easily 

get deptbM®AN = d - s .  In fact, p~ (M®AN)  -= 0 for all i < d - s  and ¢t~-S(M':4AN) > 
A d fls (M)/~A(N) ~> 1. 

Now suppose that M is perfect. Then d i m M  ®A N ---- d i m M  < d imA - grade~ M = 

d - s. Hence M '~3'A N is a CM A-module as required. E3 

Now suppose that pd A M < oc. By the above argument, we have 

depth M ~A N = dim A - p d  A M 

for any maximal CM module N. Furthermore, assume that dim A/I  + htA I = dim A 

for any ideal I o f  A. Then we get 

dim M = d imA - ht(annA M )  = dim A - grade A M, 

where the last equality follows from [9, Corollary 9.1.6]. 

Hence we get the following result. This improves Theorem 1.30). 

Corol la ry  2.5. Suppose that Pd4 M < oc and d i m A / /  + htA I = d imA for  an), ideal 

I o f  A. Then the following conditions are equivalent: 

( 1 ) M is" perfect. 
(2) M ®A N is a C M  A-module with dim M ;~)A N = dim M for any maximal C M  

A-module N. 
(3) M ~'A N is' a C M  A-module with dim M ®A N = dim M for  some maximal C M  

A-module N. 

We now recall the following conjecture by Auslander. 
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Conjeeture 2.6. ( Codimension Conjecture). When p d ~ M  < ~xD, one has 

dim M + grade4 M = dim A. 

Remark  2, I f  Codimension Conjecture is true, Corollary 2.5 is true for any local ring. 

2.2. Modules o f  finite injective dimension 

Unless specified, throughout of  this subsection, let A be a CM local ring of  dimension 
d, M a perfect A-module and N a maximal surjective Buchsbaum A-module. 

The aim of  this subsection is to state and to prove the following proposition. 

Proposit ion 2.7. Let A, M and N be as above and suppose id.4 N < oc. Then M ®A N 

is a Buchsbaum A-module with dim M @A N = dim M. Furthermore, we get 

d- I  

H~(M @A N )  ~- @Tor;~_;(M, k) h%~') 
i=O 

Jor all j < dim M, 

where hiA(N) = { (H~(N) )  for all i < d. 

In order to prove this proposition, we need the structure theorem which was proved 

by Goto and Kawasaki (cf. [3, 5]). 

Theorem 2.8 (Goto [3] and Kawasaki [5, Theorem 3.1]). Let A be a complete C M  

local ring o f  dimension d and KA a canonical module o f  A. Let g: --~ k be a minimal 

free resolution o f  k over A. Let ( - ) *  denote the functor HomA(- ,A) .  We will define 

Li as follows: 

O--~ F~ @KA -+ F~ @KA . . . .  ---+ F~* i@KA ---+ Li--+O (ex) 

for  i = O, 1 . . . . .  d. Then Li is an indecomposable maximal (except Lo in the case A 

is" regular) surjective Buchsbaum A-module o f  finite injective dimension such that 

hiA(Lj) = 6i/ Jbr all i , j  = O, 1 . . . . .  d, 

where haA(N) denotes ( ( I ra  q)~) for  an)' finite A-module N with d i m N  = d. 
Note that we have Lo = k provided that A is regular. 
Furthermore, for  any maximal surjective Buchsbaum A-module N with ida N < 2 ,  

we can write it as follows: 

d 

i=0 

On the other hand, considering a mapping cone of  a minimal free resolution, we get 

the following lemma. 
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Lemma 2.9. Let A be a local ring and M a finite A-module. Then for  each i, 

((YorA(M/xM, k))  is independent o f  the choice of  the M-regular element x. 

Proof  of  Proposi t ion 2.7. From Lemma 2.1, dim M '~A N = dim M = r. We may assume 

that A is complete and r _> 1. By Theorem 2.8, it is enough to show that M '~'A L, is 

a Buchsbaum A-module for i = 0, 1 . . . . .  d. 
- -  i 0 Step 1' In the case of  i = 0, we assume that A is not regular and put L0 = Lo/Hm(Lo). 

Then as L~ is a maximal CM A-module,  we get by Lemma 2.2 as follows: 

0 = TorA(M, F00) ~ M '~'A k ---+ M ~A L0 --~ M ,~.~ L0 ~ 0 (ex). 

Since M @A L~ is a CM A-module,  we have M ®A L0 is a surjective Buchsbaum 

A-module with 

0 i Hm(M 0 for all 1 < i  < r. H~,(M ,~ Lo) = M ®A k, 0 Lo) = _ 

Note that the above formula also holds for any regular local ring A. 

Step 2: In the case o f / =  1, put Xk = HOmA(syzJ(k),K.4). Then M@~AXk is a CM 

A-module. 
Moreover, from the short exact sequence 

O--+ L1--+ Xk -~ k ---+ O (ex), 

and from Lemma 2.2, we get 

O--~ Tor~(M,k)--~ M OALI --~ M '~AXk  --+ M ~ A k - ~ O  (ex). 

Let J be any parameter ideal for M ~'A L~. Then it is one for M, because o f  

SuppA(L 1) = Spec(A). Hence the above exact sequence implies that 

e j ( M  ~'A L1 ) = e j (M ®A Xk ). 

On the other hand, as pd A M/JM < :x~, we get 

O~Tori4(M/,.JM, k)__+ M ~ . L I  M , ~ X k  ~ M , ~ A k - - ~ O  (ex). 
' J ( M  @ Lt )  ~ J ( M  ,~,Xk) 

From here, we get 

( \(J~-M OLI~_/I ) _) - e j (M @'ALI) = ((Tori4(M/JM, k ) ) ,  - ( (M/mM) .  

Since M is a CM A-module, this is independent of  the choice of  the parameter ideal 

J for M; see Lemma 2.9. Therefore M ~'A Li is a Buchsbaum A-module. 
Now put N = ker (M '~'A Xk --~ M ~A k), and one can get the following two short 

exact sequences: 

0 --~ TorA(M,k)  -* M ~A L1 ~ N --~ 0 (ex), 

O---+N---+M@AXk--+M,~Ak---+O (ex). 
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Since {(Tori4(M,k))  < ~ and dep thN > 0, we have 

H ° , ( M , ~ , A L ~ ) ~ T o r ( ( M , k ) ,  H ~ ( M g A L ~ ) ~ H ~ , ( N )  (Vj > 1). 

Moreover,  as M '9~ Xk is CM, we get 

H~,(N) ~ H ~ f ' ( M  9A k)  ~- T o r f i / ( M , k  ) 

for all 1 ~ j < d i m M  = r. Hence the assertion is true for i = ]. 

Step 3: Assume that M 'gA Li-r is a Buchsbaum A-module for some i (2 < i < d )  

and 

H~,(M 9,4 L;-1)  =~ Tori4_/_l(M,k) for j < r. 

In order to complete the proof, we have to show that M'9A L; is a Buchsbaum A-module 

and 

H~,(M 9A Li) ~ Tor~_j(m,k)  for j < r. 

In order to do that, we consider the following exact sequence: 

$ 
0 ---+ Li --+ F~_i+ l ®A KA ~ Li-I  ~ 0 (ex). 

For simplicity, we put X * -~ F~l_i+ 1 9A KA. Applying the functor M ®A -- to the above 

sequence, we get 

0 ~ Tor~(M, Li_i ) ~ M ~'A Li ~ M 9,4 X --~ M 9,4 Li-1 ~ 0 (ex), 

Note that the isomorphism Tor( (M,  Li-r ) ~  Torff(M,k)  is derived from Lemma 2.2 

and the following exact seqeunce: 

0 ~ Li_l ~ F~t_i+ 2 '9A KA ---+ "'" --+ Fff_l @~A KA ---+ Yk ~ k --~ 0 (ex). 

Now let J be any parameter ideal for M 'gA Li. Then as J is also one for M, we get 

M ,~ Li M 9 X M 9 Li -  i 
0 ---, Tori4(M/'Jm, L i - j )  --+ J ( m  ,~,Li) ~ J ( m  9 X )  ~ J ( M  ®L~_~)  --+ 0 

and thus 

/ M ~ L~ "] _ 
: _ ~ J ( - M ~ 2 i ) J  e j ( M  @ALi) 

= ( ( Y o r ( ( M / J M ,  Li_ )) + I4(M ,9,4 X )  - IA(M 9A Li- i  ) 

-= ¢(Yori4(M/JM, k ) ) - 1A( M 'gALi-  t ). 

Hence M ~A L; is a Buchsbaum A-module o f  dimension r. 

Furthermore, from the similar argument as in Step 2, we can easily get as follows: 

H O : ~  ~ L;) ~ Yor~4(M,k) l~ ~ ~ ' A  

H ~ ( M  0.4 L i ) -  ~ -HJ-I(M-,~ 9A L,-1 ) ~ TorA_j(m,k)  

for all 1 < j  < r. 
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Finally, noting that T o r J _ j ( M , k )  ~- 0 whenever j < r = d -  pd A M, we can get the 

required assertion. [] 

2.3. The  genera l  case 

Throughout of  this subsection, assume that A is a CM local ring o f  dimension d, M 

is a perfect A-module and N is a maximal surjective Buchsbaum A-module. 

We now recall the notion o f  L-basis. See [10, Chapter 1] for detail. 

Let L be a finite A-module and I C A an ideal. Suppose dim L/ IL  = 0. Let r = dim L. 

A system of  elements al . . . . .  at o f  A is called an L-basis of  I if  the following conditions 

are fulfilled; 

(i)  al . . . . .  at is a minimal basis o f  1. 

(ii) For every system il . . . . .  ir o f  integers with 1 < il < . . .  < ir < t the elements 

ai~ . . . .  ,a,,  form an s.o.p, of  L. 

As is known an L-basis of  I always exists. Furthermore, the following criterion for 

Buchsbaum modules is known ([1 1, Proposition 3.2]). 

L is a Buchsbaum A-module i f  and only i f  L is F.L.C,  and there exists an L-basis 

al . . . . .  at, of  m that satisfies the following condition: For any 1 < il < . . -  < ir _< v, 

one has the equality 

r - - I  

i ( H  L)) ,  

where J = (ai . . . . . .  ai, )A and r =- dim L. 

We are now ready to prove Theorem 1.1 and Corollary 1.2. 

P roo f  of Theorem 1.1, We may assume that A is complete and dim M -:  r _> 1. Let 

N be a maximal surjective Buchsbaum A-module and 

O ---, N --+ Y ---~ X ---, O (ex) 

be its finite injective hull over A, that is, Y is a finite A-module of  finite injective 

dimension and X is a maximal CM A-module (cf. [1]). 

Since X is a maximal CM A-module,  Y is also a maximal  surjective Buchsbaum 

A-module with depth Y = depthN.  Moreover,  as TorA(M,X)  = 0, we get 

0 ~ M ® , A N - - - , M ~ , . a Y ~ M ~ , A X ~ 0  (ex). (1) 

From Propositions 2.7 and 2.4, we have that M ~A Y is a Buchsbaum A-module 

and M ~A X is a CM A-module with dim M ~.4 N = dim M ~.~ Y = dim M 9.4 X = r. 

Moreover,  we get 

depth M '~A N = depth M '~A Y 

= max {depth Y - pd4 M,0} 

= max {depth N - pd4 M, 0}.  
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Let al . . . .  ,a,. be an M-bas is  o f  m. Noting that this basis is also an M ®.4 N-basis  

of  m, in order to prove that M '~'A N is a Buchsbaum A-module, it suffices to show 
that the following formula holds: For any 1 _< il < - . .  < i~ < v, 

) -'( ) i z (n,,~(M,~A N)),  
i=O 

where J -~ (ai, . . . . .  ai.. )A. 
Now suppose that J is a parameter ideal for M. As Tor~(A/ 'J ,M~AX) ~ O, we get 

M ~ N  
\ j ~ - ~ - ~ [ ) )  - e j (M @,~ N )  

{ } = [ \ J ( M  @ Y ) J  e j (M ~A Y )  - {' \ J ( M  ~ , X ) J  e j (M ~)A X )  

r - - I  

, 

and thus M ~A N is a Buchsbaum A-module. 

In (4), in addition, suppose dep thN > pd.4 M ~- s. From (1), we have that M ®4 N 

is a surjective Buchsbaum A-module i f  and only i f  so is M ~.~ Y. 

Thus we may assume that ida N < oc. Then as 

d 

M ~A N ~ O ( M  '~'A Lt) ~''6'\') 
t = S  

it suffices to show that M ~A Lt is a surjective Buchsbaum A-module for t = s . . . . .  d. 

From Lemma 2.2, we get 

TorA(M, Lt) ~- Tor~+t(M,k ) = 0 for all i > 1,t _> s. 

From Lemma 2.3 and [12, Theorem 1.2], we get 

s 

= X fi~(M) l[4 (L,) p~(M '~A Lt)  A n+l, 

p=O 
s 

p~0 

for all n < r = d - s .  
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On the other hand, from Proposition 2.7, we have 

n t/ 

A k 

j=0 s=o 

= 

p=t--n 
s 

.4 = G ( M )  
p=0 

for all n < r = d - s. Therefore we conclude that M '~A L, is a surjective Buchsbaum 
A-module for all t _> s ([12, Theorem (1.2)]). Hence so is M ®a N. 

Proof of Corollary 1.2. We need only to prove the implication (2) ~ (1). Suppose 
that d i m M  > I and M ®4 N is a CM A-module. We may assume that A is complete. 

Let 

0 - + N ~  Y ~ X - - - + 0  (ex) 

be a finite injeetive hull of  N over A. Then Y is also a maximal surjective Buchsbaum 

A-module. As M ~A X is a CM A-module with dim M @m A" : F, we have that M @A N 

is CM if and only if so is M @ A  Y (cf. Eq. (1)). 
Now suppose that L, is a direct summand of  Y for some t. Then since M ®.4 L, 

is also a direct summand of  M @m Y, m ~'A L, is CM. Thus from Proposition 2.7 

we get 

T o r i 4 ) ( M , k ) : 0  for all j = 0 , 1  . . . . .  r -  1. 

It follows that t - ( r -  1) >_ pd A M +  1 = d - r +  1, that is, t = d. Hence Y is a 

maximal CM A-module, and thus so is N. [] 

Conjecture 2.10. Let  M be a pe(fect A-module and N a maximal surjective Buchs- 

baum A-module. Then M @A N is a surjective Buchsbaum A-module. 

Conjecture 2.11. Let M be a perJect A-module o f  positive dimension and N a finite 

A-module with d i m N  = dimA. I f  M G A N is" a C M  A-module, then N is a max#nal 

C34 A-module. 

3. Examples 

We first recall the following remark [8]. 

Let A be a local ring. Then 
(1) syzi4(k) = 0 if and only i fA  is regular and t > dimA + 1. 

(2) If  syz f (k )  ¢; 0, then SuppA(sYzi4(k)) - Spec(A). 
Using the similar argument as in the proof o f  Proposition 2.7, one can get as follows: 
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Proposition 3.1. Let  A be a local ring and t >_ 1 an integer. Suppose that M is a 
C M  A-module. I f  syz~4(k) ¢ 0, then M ,5~,,4 syzA(k) is a Buchsbaum A-module with 
dim M '~A sYZ A (k) = dim M. 

Furthermore, we have 

HJ,¢(M '~A syzA(k)) ~ TorA_j(M,k) 

Jor all j < dim M. 

From this proposition, we get two corollaries as follows: 

Corollary 3.2. Let  A be a regular local ring and M a perfect A-module. I f  N is 

a max imal  Buchsbaum A-module, then M ~.4 N is a Buchsbaum A-module with 
dim M @.4 N = dim M. 

Proof.  The statement follows from Proposition 3.1 [10, Chapter 1, Corollary 2.16; 3]. 
[] 

Corollary 3.3. Let  A be a local ring and M a C M  A-module with dim M >_ 1. I f  

M ~'A sYz/4(k) is a C M  A-module for  some positive integer t, then M is perJbct. 

Proof.  By the assumption, one can easily get 

0 = H ° ( M  ~.4 sYz/(k))  ~- Tor / (M,k) .  

Thus we have pd AM < :x~. Hence A is a CM local ring and M is perfect. (cf. 1.8 

and 1.9). [] 

Let A be a CM local ring, M a perfect A-module and N a finite A-module with 
d i m N  = dimA. Then the condition of  Theorem l . l ( l )  does not imply that N is a 

surjective Buchsbaum A-module. See below. 

Example 3.4 (e.g. St i ickrad and Vogel [10, Chapter 1, Section 2, Example  2.18]). Let 
A : k[[X, Y,Z, W]]/(X2Z, Y W )  and 

N = A,/(X2W, YZ)A ~ k[[X, Y,Z, W]]/ (X 2, Y)  N (Z, W). 

Put a = x + z .  Then 

(1) a is an A-regular element. In particular, A/aA is perfect. 

(2) N is F.L.C. with d imN = dimA = 2. 

(3) N is not a Buchsbaum A-module. 
(4) N/aN ~ A/aA ®A N is a surjective Buchsbaum A-module. 

In the rest of  this section, we consider the following question. 

Question 3.5. Let M be a surjective Buchsbaum A-module of  finite projective di- 

mension and N a maximal surjective Buchsbaum A-module. Then when is M @~A N 

surjective Buchsbaum A-module ? 

For this question, we give two answers as follows. 
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Proposition 3.6 (cf. Kawasaki [5, Theorem 3.3(iii)]). Let A be a CM local ring with 
canonical module KA. Let M be a finite A-module of  finite projective dimension and 
N a maximal CM A-module. 

I f  M '~,4 KA is a surjective Buehsbaum A-module, then so is M ~.4 N. 

Let H. (resp. (3.) be a minimal free resolution o f M  (resp. Hom4(N, KA)) over A. For 

any complex ~., let N.(n) denote the shifting of  N. in degree n. Then HomA(H.,A)(-d) 
'~AG. gives a minimal free resolution of  D(M ~'A N)  = Hom4(M ~'A N,D.4), where DA 
denotes a normalized dualizing complex of  A; see the proof of  [5, Theorems 3.1 and 
3.3]. From here, one can get the proof of  the above proposition by the same argument 
as in the proof of  [5, Theorem 3.3]. 

On the other hand, the following example gives a negative answer for Question 3.5. 

Example 3.7. Let A be a Gorenstein local ring with d = dim A _> 2 and let M, N 

be maximal surjective Buchsabaum A-modules o f  finite projective dimension. Put t = 

depth M and u = depth N. Suppose t + u >_ d and t, u < d - 1. Then M @A N is not a 
surjective Buchsbaum A-module. 

Proof.  We may assume that A is complete, M = Lt and N = Lu; see Theorem 2.8. 
Moreover, assume that t + u > d , t  < u < d -  1. 

Suppose that L t , ~  Lu is a surjective Buchsbaum A-module. By Lemma 2.2, we have 

Torj4(L,L,)  = 0 for all i > 1. Put 0 = t + u - d .  Then from Lemma 2.3, we get 

depthLt @.4 Lu = 0 and for all 0 < i < t, 

d--t  
A 

p=O 

d - t  

. A k Z flAP (L') tiP+"-"( ) 
p~u-- i  

d--t  

= . f l p + i _ u ( k ) .  

p=u -- i 

Thus 
i 

j.4+°(L, @A L,) = Zfl)4_q(k ) • fl~(k ) 
q=O 

for all 0 < i < t - 0. 
On the other hand, by [12, Theorem 1.2], we get 

t~[[°(Lt '~'A L.) = 

for all 0 < i <  t - 0 .  

for a l l 0 < _ j < _ t .  

i 

] _fl,Lq(k ). hT°(L, L.) 
q=0 

(2) 

(3) 

Thus from Eqs. (2) and (3), we have hJA(Lt ®~ Lz,) = fl)4_o(k) 
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" -"-rurmermore, from the hypothesis, we can write as 

d 
0 ~ I'(L'GL':)" Lt ~'A L u = L 
j=O 

Therefore we get 

= [AA(Lt @A Lu) 
d 

: Z p A ( L / ) .  h~(Lt '~A L.)  
j=O 

t 

j=O 

This is a contradiction and completes the proof of  this example. [~ 

4. Serre conditions 

As is known if a local ring A admits a CM A-module of  finite projective dimension 

then A itself is a CM local ring. 

We can improve this result as follows: 

Proposition 4.1. Let A be a local ring and n a nonneqative integer. I r A  admits 
a finite A-module M of finite projective dimension which satisfies Sn, then A itself 
satisfies Sn. 

M ' Sn -'. :- depthMp >_ min(n, dimMp) Jbr every P E SuppA(M ). 

Proof. Fix P E Spec(A). We must show depthAp >_ min(n,  dimAe).  

Case 1: When P E SuppA(M ), we have 

depth Ap = depth Me + pdAeMp. 

When dim Mp > n, one has 

depthAe > depth Me >_ min (n, d imMp) = n. 

Otherwise, then MR is a CM Ap-module and so that Ap is CM. Thus we get the 

required inequality. 
Case 2: When P ~ SuppA(M), we put 1 = annA(M). If  neessary, localizing at a 

prime ideal Q E Min(A/'l  + P ) ,  we may assume that m = x/I-+ P. 
By Intersection Theorem, we have 

dimA/P < pd A M + dim(AlP '~'A M)  = pd A M, 
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and so 

depthAp >_ grad% A/P 
> depthA - dimA/'P 
> depth A - pd A M 

= depth M. 

When dimM > n, depthAp > depthM > n. Otherwise, then M is CM, and so that 

A is CM. Hence depthAe > min(n, dimAp). 
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